บทที่ 8 เทคโนโลยีอวกาศ
อวกาศอยู่สูงเหนือศีรษะขึ้นไปเพียงหนึ่งร้อยกิโลเมตรแต่การที่จะขึ้นไปถึงมิใช่เรื่องง่าย เมื่อสามร้อยปีมาแล้ว เซอร์ไอแซค นิวตัน (Sir Isaac Newton) นักคณิตศาสตร์ชาวอังกฤษ ผู้คิดค้นทฤษฎีเรื่องแรงโน้มถ่วงของโลก อธิบายว่า หากเราขึ้นไปอยู่บนที่สูงแล้วปล่อยวัตถุให้หล่น วัตถุจะตกลงสู่พื้นในแนวดิ่ง เมื่อออกแรงขว้างวัตถุออกไปในทิศทางขนานกับพื้น วัตถุจะเคลื่อนที่เป็นเส้นโค้ง (A) ดังในภาพที่ 1 แรงลัพธ์ซึ่งเกิดขึ้นจากแรงที่เราขว้างและแรงโน้มถ่วงของโลกรวมกันทำให้วัตถุเคลื่อนที่เป็นวิถีโค้ง ถ้าเราออกแรงมากขึ้น วิถีการเคลื่อนที่ของวัตถุจะโค้งน้อยลง วัตถุจะยิ่งตกไกลขึ้น (B) และหากเราออกแรงมากจนวิถีของวัตถุขนานกับความโค้งของโลก วัตถุจะไม่ตกสู่พื้นโลกแต่จะโคจรรอบโลกเป็นวงกลม (C) เราเรียกการตกในลักษณะเช่นนี้ว่า “การตกอย่างอิสระ” (Free fall) และนี่คือหลักการส่งยานอวกาศขึ้นสู่วงโคจรรอบโลก หากเราเพิ่มแรงให้กับวัตถุมากขึ้นไปอีกก็จะได้วงโคจรเป็นรูปวงรี (D) และถ้าเราส่งวัตถุด้วยความเร็ว 11.2 กิโลเมตรต่อวินาที วัตถุจะไม่หวนกลับคืนมาแต่จะเดินทางออกสู่ห้วงอวกาศ (E) เราเรียกความเร็วนี้ว่า “ความเร็วหลุดพ้น” (Escape speed) และนี่คือหลักการส่งยานอวกาศไปยังดาวเคราะห์ดวงอื่น
 |
หลักการส่งยานอวกาศ |
หมายเหตุ: ในทางปฏิบัติเราไม่สามารถส่งวัตถุขึ้นสู่อวกาศในแนวราบได้ เพราะโลกมีบรรยากาศห่อหุ้มอยู่ ความหนาแน่นของอากาศจะต้านทานให้วัตถุเคลื่อนที่ช้าลงและตกสู่พื้นเสียก่อนที่จะเข้าสู่วงโคจร ด้วยเหตุนี้นักวิทยาศาสตร์จึงออกแบบวิถีของจรวดให้ขึ้นสู่ท้องฟ้าในแนวดิ่ง แล้วค่อยปรับวิถีให้โค้งขนานกับผิวโลกเมื่อเหนือชั้นบรรยากาศในภายหลัง
จรวด (Rocket) เป็นเครื่องยนต์ที่ใช้ขับเคลื่อนพาหนะสำหรับขนส่งอุปกรณ์หรือมนุษย์ขึ้นสู่อวกาศ จรวดสามารถเดินทางไปในอวกาศ เนื่องจากไม่จำเป็นต้องอาศัยออกซิเจนในบรรยากาศมาใช้ในการสันดาปเชื้อเพลิง ทั้งนี้เพราะว่าจรวดมีถังบรรจุออกซิเจนอยู่ในตัวเอง จรวดที่ใช้เดินทางไปสู่อวกาศจะต้องมีแรงขับเคลื่อนสูงมากและต่อเนื่อง เพื่อเอาชนะแรงโน้มถ่วงของโลก (Gravity) ซึ่งมีความเร่ง 9.8 เมตร/วินาที2 ในการเดินทางจากพื้นโลกสู่วงโคจรรอบโลก จรวดทำงานตามกฎของนิวตัน 3 ข้อดังนี้
กฎข้อที่ 3 “แรงกริยา = แรงปฏิกิริยา” จรวดปล่อยแก๊สร้อนออกทางท่อท้ายด้านล่าง (แรงกริยา) ทำให้จรวดเคลื่อนที่ขึ้นสู่อากาศ (แรงปฏิกิริยา)
กฏข้อที่ 2 "ความเร่งของจรวดแปรผันตามแรงขับของจรวด แต่แปรผกผันกับมวลของจรวด" (a = F/m) ดังนั้นจรวดต้องเผาไหม้เชื้อเพลิงอย่างต่อเนื่อง เพื่อสร้างความเร่งเอาชนะแรงโน้มถ่วง และเพื่อให้ได้ความเร่งสูงสุด นักวิทยาศาสตร์จะต้องออกแบบให้จรวดมีมวลน้อยที่สุดแต่มีแรงขับดันมากที่สุด
กฎข้อที่ 1 "กฎของความเฉื่อย" เมื่อจรวดนำดาวเทียมหรือยานอวกาศเข้าสู่วงโคจรรอบโลกแล้ว จะดับเครื่องยนต์เพื่อเคลื่อนที่ด้วยแรงเฉื่อย ให้ได้ความเร็วคงที่ เพื่อรักษาระดับความสูงของวงโคจรให้คงที่
 |
จรวดอารีอาน นำดาวเทียมไทยคมขึ้นสู่วงโคจร |
กระสวยอวกาศ
จรวดเป็นอุปกรณ์ราคาแพง เมื่อถูกส่งขึ้นสู่อวกาศแล้วไม่สามารถนำมาใช้ใหม่ได้ การส่งจรวดแต่ละครั้งจึงสิ้นเปลืองมาก นักวิทยาศาสตร์จึงพัฒนาแนวคิดในการสร้างยานขนส่งขนาดใหญ่ที่สามารถเดินทางขึ้นสู่อวกาศแล้วเดินทางกลับสู่โลกให้นำมาใช้ใหม่ได้หลายครั้ง เรียกว่า "กระสวยอวกาศ" (Space Shuttle) มีองค์ประกอบประกอบ 3 ส่วน
 |
ส่วนประกอบของกระสวยอวกาศ |
• จรวดเชิ้อเพลิงแข็ง (Solid Rocket Booster)
• จำนวน 2 ชุด ติดตัั้งขนาบกับถังเชื้อเพลิงภายนอกทั้งสองข้าง มีหน้าที่ขับดันให้ยานขนส่งอวกาศทั้งระบบทะยานขึ้นสู่อวกาศ ถังเชื้อเพลิงภายนอก (External Tank) จำนวน 1 ถัง ติดตั้งอยู่ตรงกลางระหว่างจรวดเชื้อเพลิงแข็งทั้งสองด้าน มีหน้าที่บรรทุกเชื้อเพลิงเหลว ซึ่งมีท่อลำเลียงเชื้อเพลิงไปทำการสันดาปในเครื่องยนต์ซึ่งติดตั้งอยู่ทางด้านท้ายของกระสวยอวกาศ
• ยานขนส่งอวกาศ (Orbiter) ทำหน้าที่เป็นยานอวกาศ ห้องทำงานของนักบิน ห้องปฏิบัติการของนักวิทยาศาสตร์ และบรรทุกสัมภาระที่จะไปปล่อยในวงโคจรในอวกาศ เช่น ดาวเทียม หรือชิ้นส่วนของสถานีอวกาศ เป็นต้น เมื่อปฏิบัติภารกิจสำเร็จแล้ว ยานขนส่งอวกาศจะทำหน้าที่เป็นเครื่องร่อน นำนักบินอวกาศและนักวิทยาศาสตร์กลับสู่โลกโดยร่อนลงสนามบิน ด้วยเหตุนี้ยานขนส่งอวกาศจึงต้องมีปีกไว้สำหรับสร้างแรงยก แรงต้านทาน และควบคุมท่าทางการบินขณะที่กลับสู่ชั้นบรรยากาศของโลก ยานขนส่งอวกาศสามารถนำมาใช้ใหม่ได้หลายครั้ง
ขั้นตอนการทำงานของกระสวยอวกาศ
1. กระสวยอวกาศยกตัวขึ้นจากพื้นโลก โดยใช้กำลังขับดันหลักจากจรวดเชื้อเพลิงแข็ง 2 ชุด และใช้แรงดันจากเครื่องยนต์เชื้อเพลิงเหลวซี่งติดตั้งอยู่ทางด้านท้ายของยานขนส่งอวกาศเป็นตัวควบคุมวิถีของกระสวยอวกาศ ดังภาพที่ 2
2. หลังจากทะยานขึ้นสู่ท้องฟ้าได้ 2 นาที ได้ระยะสูงประมาณ 46 กิโลเมตร เชื้อเพลิงแข็งถูกสันดาปหมด จรวดเชื้อเพลิงแข็งถูกปลดออกให้ตกลงสู่พื้นผิวมหาสมุทร โดยกางร่มชูชีพเพื่อชะลออัตราการร่วงหล่น และมีเรือมารอลากกลับ เพื่อนำมาทำความสะอาดและบรรจุเชื้อเพลิงเพื่อใช้ในภารกิจครั้งต่อไป
3. กระสวยอวกาศยังคงทะยานขึ้นสู่อวกาศต่อไปยังระดับความสูงของวงโคจรที่ต้องการ โดยเครื่องยนต์หลักที่อยู่ด้านท้ายของยานขนส่งอวกาศจะดูดเชื้อเพลิงเหลวจากถังเชื้อเพลิงภายนอก มาสันดาปจนหมดภายในเวลา 5 นาที แล้วสลัดถังเชื้อเพลิงภายนอกทิ้งให้เสียดสีกับชั้นบรรยากาศจนลุกไหม้หมดก่อนตกถึงพื้นโลก ณ เวลานั้นยานขนส่งอวกาศจะอยู่ในระดับความสูงของวงโคจรที่ต้องการเป็นที่เรียบร้อยแล้ว
 |
ขั้นตอนการส่งกระสวยอวกาศ |
4. ยานขนส่งอวกาศเข้าสู่วงโคจรอบโลกด้วยแรงเฉื่อย โดยมีเชื้อเพลิงสำรองภายในยานเพียงเล็กน้อยเพื่อใช้ในการปรับทิศทาง เมื่อถึงตำแหน่ง ความเร็ว และทิศทางที่ต้องการ จากนั้นนำดาวเทียมที่เก็บไว้ในห้องเก็บสัมภาระออกมาปล่อยเข้าสู่วงโคจร ซึ่งจะเคลื่อนที่โดยอาศัยแรงเฉื่อยจากยานขนส่งอวกาศนั่นเอง ภาพที่ 3 แสดงให้เห็นยานขนส่งอวกาศกำลังใช้แขนกลยกกล้องโทรทรรศน์อวกาศฮับเบิลออกจากห้องเก็บสินค้าที่อยู่ด้านบน เพื่อส่งเข้าสู่อวงโคจรรอบโลก
 |
ยานขนส่งอวกาศกำลังส่งกล้องโทรทรรศน์อวกาศฮับเบิลเข้าสู่วงโคจร |
5. จากนั้นยานขนส่งอวกาศจะเคลื่อนที่จากออกมา โดยยานขนส่งอวกาศสามารถปรับท่าทางการบินโดยใช้เครื่องยนต์จรวดเชื้อเพลิงเหลวขนาดเล็ก ซึ่งเรียกว่า "ทรัสเตอร์" (Thrusters) หลายชุดซึ่งติดตั้งอยู่รอบยาน ดังในภาพที่ 3 ยกตัวอย่างเช่น หากต้องการให้ยานก้มหัวลง ก็จะจุดทรัสเตอร์หัวยานด้านบนและทรัสเตอร์ท้ายยานด้านล่างพร้อมๆ กัน เมื่อได้ทิศทางที่ต้องการก็จะจุดทรัสเตอร์ในทิศตรงการข้ามเพื่อหยุดการเคลื่อนไหว หากต้องการหันยานไปทางขวามือ ก็จุดทรัสเตอร์หัวยานด้านซ้ายและทรัสเตอร์ท้ายยานด้านขวาพร้อมๆ กัน เมื่อได้ทิศทางที่ต้องการจุดทรัสเตอร์ในทิศตรงการข้ามเพื่อหยุดการเคลื่อนไหว
 |
การปรับทิศทางของกระสวยอวกาศ |
6. เมื่อเสร็จสิ้นภารกิจในวงโคจร ยานขนส่งอวกาศจะใช้ปีกในการต้านทานอากาศเพื่อชะลอความเร็ว และสร้างแรงยกเพื่อร่อนลงสู่สนามบินในลักษณะคล้ายเครื่องร่อนซึ่งไม่มีแรงขับเคลื่อนใดๆ นอกจากแรงโน้มถ่วงของโลกที่กระทำต่อตัวยาน ดังนั้นเมื่อตัดสินใจจะทำการลงแล้วต้องลงให้สำเร็จ ยานขนส่งอวกาศจะไม่สามารถเพิ่มระยะสูงได้อีก หลังจากที่ล้อหลักแตะพื้นสนามบินก็จะปล่อยร่มชูชีพเพื่อชะลอความเร็ว เพื่อให้ใช้ระยะทางบนทางวิ่งสั้นลง
ดาวเทียม
ดาวเทียม (Satellite) คือ อุปกรณ์ที่มนุษย์สร้างขึ้นแล้วปล่อยไว้ในวงโคจรรอบโลก เพื่อใช้ประโยชน์ในด้านต่างๆ เช่น ถ่ายภาพ ตรวจอากาศ โทรคมนาคม และปฏิบัติการทางวิทยาศาสตร์ เป็นต้น ดาวเทียมถูกส่งขึ้นสู่อวกาศโดยติดตั้งบนจรวดหรือยานขนส่งอวกาศ ดาวเทียมดวงแรกของโลกเป็นของสหภาพโซเวียตชื่อ สปุตนิก 1 (Sputnik 1) ถูกส่งขึ้นสู่อวกาศเมื่อวันที่ 4 ตุลาคม 2500 นับเป็นจุดเริ่มต้นของยุคอวกาศ
 |
ดาวเทียมสปุตนิก 1 |
ห้าสิบกว่าปีผ่านไปนับตั้งแต่สปุตนิก 1 ถูกส่งขึ้นสู่อวกาศจนถึงปัจจุบัน ได้มีการส่งดาวเทียมขึ้นสู่วงโคจรรอบโลกมากกว่า 30,000 ดวง เพื่อใช้ประโยชน์ในด้านต่างๆ ดาวเทียมทั้งหลายจึงมีขนาด รูปร่าง ลักษณะแตกต่างกัน อย่างไรก็ตามดาวเทียมส่วนใหญ่มีองค์ประกอบหลักที่คล้ายคลึงกัน
 |
ส่วนประกอบของดาวเทียมธีออส |
ระบบนำร่อง เป็นระบบคอมพิวเตอร์และไจโรสโคป ซึ่งมีหน้าที่ตรวจสอบตำแหน่งของดาวเทียม โดยการเปรียบเทียบกับตำแหน่งของดาวฤกษ์ สัญญาณวิทยุจากสถานีบนโลกหรือสัญญาณจากดาวเทียมจีพีเอส
ระบบควบคุมและสื่อสาร ประกอบด้วย คอมพิวเตอร์ที่เก็บรวมรวมข้อมูล และประมวลผลคำสั่งต่างๆ ที่ได้รับจากส่วนควบคุมบนโลก โดยมีอุปกรณ์วิทยุและเสาอากาศ เพื่อใช้ในการรับส่งข้อมูล
ระบบเซ็นเซอร์ และอุปกรณ์วิทยาศาสตร์อื่นๆ ขึ้นอยู่กับวัตถุประสงค์ของภารกิจ เช่น ดาวเทียมสำรวจโลกติดตั้งเซ็นเซอร์ตรวจจับช่วงคลื่นต่างๆ, ดาวเทียมปฏิบัติการทางวิทยาศาสตร์ติดตั้งห้องทดลอง, ดาวเทียมทำแผนที่ติดตั้งเรดาร์และกล้องถ่ายภาพ ข้อมูลที่ได้จากระบบนี้จะถูกส่งกลับสู่โลกโดยใช้เสาอากาศส่งคลื่นวิทยุ
ระบบพลังงาน ทำหน้าที่ผลิตพลังงานและกักเก็บไว้เพื่อแจกจ่ายไปยังระบบไฟฟ้าของดาวเทียม โดยมีแผงรับพลังงานแสงอาทิตย์ (Solar cells) ไว้รับพลังงานจากแสงอาทิตย์เพื่อเปลี่ยนเป็นพลังงานไฟฟ้า แต่ดาวเทียมขนาดใหญ่อาจมีเครื่องปฏิกรณ์นิวเคลียร์
ระบบเครื่องยนต์ ดาวเทียมขนาดใหญ่ที่มีอายุใช้งานยาว จะมีเครื่องยนต์ซึ่งทำงานคล้ายกับเครื่องอัดอากาศ และปล่อยออกทางปลายท่อ มีหน้าที่สร้างแรงขับดันเพื่อรักษาระดับความสูงของวงโคจร เนื่องจากที่ระดับวงโคจรในอวกาศยังคงมีโมเลกุลอยู่อย่างเบาบาง แต่ดาวเทียมโคจรด้วยความเร็วสูง โมเลกุลอากาศสามารถสร้างแรงเสียดทานให้ดาวเทียมเคลื่อนที่ช้าลงและเคลื่อนที่ต่ำลง หากไม่รักษาระยะสูงไว้ ในที่สุดดาวเทียมก็จะตกลงสู่พื้นโลก
ยานอวกาศ
ยานอวกาศ (Spacecraft) หมายถึง ยานพาหนะที่นำมนุษย์หรืออุปกรณ์อัตโนมัติขึ้นไปสู่อวกาศ โดยมีวัตถุประสงค์เพื่อสำรวจโลกหรือเดินทางไปยังดาวดวงอื่น ยานอวกาศมี 2 ประเภท คือ ยานอวกาศที่มีมนุษย์ควบคุม และยานอวกาศที่ไม่มีมนุษย์ควบคุม
ยานอวกาศที่มีมนุษย์ควบคุม (Manned Spacecraft) มีขนาดใหญ่ เพราะต้องมีปริมาตรพอที่มนุษย์อยู่อาศัยได้ และยังต้องบรรทุกปัจจััยต่างๆ ที่มนุษย์ต้องการ เช่น อากาศ อาหาร และเครื่องอำนวยความสะดวกในการยังชีพ เช่น เตียงนอน ห้องน้ำ ดังนั้นยานอวกาศที่มีมนุษย์ควบคุมจึงมีมวลมาก การขับดันยานอวกาศที่มีมวลมากให้มีอัตราเร่งสูงจำเป็นต้องใช้จรวดที่บรรทุกเชื้อเพลิงจำนวนมาก ซึ่งทำให้มีค่าใช้จ่ายสูงมาก ยานอวกาศที่มีมนุษย์ควบคุมได้แก่
ยานอะพอลโล (Apollo) ซึ่งนำมนุษย์ไปยังดวงจันทร์
 |
ยานอะพอลโล |
ยานอวกาศที่ไม่มีมนุษย์ควบคุม (Unmanned Spacecraft) มีขนาดเล็กมากเมื่อเปรียบเทียบกับยานอวกาศที่มีมนุษย์ควบคุม ยานอวกาศชนิดนี้มีมวลน้อยไม่จำเป็นต้องใช้จรวดนำส่งขนาดใหญ่ จึงมีความประหยัดเชื้อเพลิงมาก อย่างไรก็ตามในการควบคุมยานในระยะไกลไม่สามารถใช้วิทยุควบคุมได้ เนื่องจากคลื่นแม่เหล็กไฟฟ้าต้องใช้เวลาในการเดินทาง ยกตัวอย่างเช่น ดาวเสาร์อยู่ไกลจากโลกประมาณ 1 พันล้านกิโลเมตร หรือ 1 ชั่วโมงแสง หากส่งคลื่นวิทยุไปยังดาวเสาร์ คลื่นวิทยุต้องใช้เวลานานถึง 1 ชั่วโมง ดังนั้นการควบคุมให้ยานเลี้ยวหลบหลีกก้อนน้ำแข็งบริเวณวงแหวนจะไม่ทัน ยานอวกาศประเภทนี้จึงต้องมีสมองกลคอมพิวเตอร์และระบบซอฟต์แวร์ซึ่งฉลาดมาก เพื่อให้ยานอวกาศสามารถต้องปฏิบัติภารกิจได้เองทุกประการและแก้ไขปัญหาเฉพาะหน้าได้ทันท่วงที เหตุผลอีกส่วนหนึ่งที่นักวิทยาศาสตร์นิยมใช้ยานอวกาศที่ไม่มีมนุษย์ควบคุมในงานสำรวจระยะบุกเบิกและการเดินทางระยะไกล เนื่องจากการออกแบบยานไม่ต้องคำนึงถึงปัจจัยในการดำรงชีวิต ทำให้ยานสามารถเดินทางระยะไกลได้เป็นระยะเวลานานนอกเหนือขีดจำกัดของมนุษย์ ยานอวกาศที่ไม่มีมนุษย์ควบคุมได้แก่
ยานแคสินี (Cassini spacecraft) ซึ่งใช้สำรวจดาวเสาร์ เป็นต้น
 |
ยานอวกาศที่ไม่มีมนุษย์ควบคุม |
ยุคอวกาศเริ่มขึ้นเมื่อสหภาพส่งดาวเทียม
สปุตนิก 1 (Sputnik 1) ขึ้นสู่อวกาศในปี พ.ศ.2500 หลังจากนั้นการแข่งขันทางอวกาศในยุคสมัยของสงครามเย็นก็เริ่มขึ้น ดาวเทียมที่ถูกส่งขึ้นสู่อวกาศเป็นลำดับที่ 2 ไม่ใช่ของสหรัฐอเมริกา แต่เป็นดาวเทียม
สปุตนิก 2 (Sputnik 2) และสุนัขชื่อ
ไลก้า (Laika) ของสหภาพโซเวียต และนักบินอวกาศคนแรกของโลกเป็นเป็นชาวรัสเซียชื่อ
ยูริ กาการิน (Yuri Gagarin) ขึ้นสู่วงโคจรโลกด้วยยานอวกาศวอสต็อก (Vostok) ในปี พ.ศ.2504 ด้วยเหตุนี้ประธานาธิบดีจอห์น เอฟ เคเนดี้ จึงสนับสนุนโครงการอะพอลโลขององค์การ NASA จนนักบินอวกาศคนแรกที่เหยียบพื้นผิวดวงจันทร์คือ
นีล อาร์มสตรอง (Neil Armstrong) โดยยาน
อะพอลโล 11 (Apollo 11) เมื่อปี พ.ศ.2512 จนกระทั่งสงครามเย็นสิ้นสุดลง ประเทศมหาอำนาจต่างๆ ได้ร่วมมือกันก่อสร้าง
สถานีอวกาศนานาชาติ (International Space Station) หรือ
ISS ขึ้นไปโคจรรอบโลกตั้งแต่ปี พ.ศ.2541 เป็นต้นมา
ไม่มีความคิดเห็น:
แสดงความคิดเห็น