ดาวฤกษ์

บทที่6 ดาวฤกษ์ : Star


วัฏจักรของดาวฤกษ์
     ดาวฤกษ์เกิดขึ้นจากกลุ่มแก๊สและฝุ่นรวมตัวกัน ซึ่งเรียกว่า เนบิวลา เมื่อก๊าซร้อนในเนบิวลาอัดแน่นจนมีอุณหภูมิสูงถึง 10 ล้านเคลวิน จะเกิดปฏิกิริยานิวเคลียร์ฟิวชั่นหลอมรวมไฮโดนเจนให้เป็นฮีเลียม กำเนิดเป็นดาวฤกษ์ ดาวฤกษ์ที่เห็นบนท้องฟ้าส่วนมากเป็นดาวในลำดับหลัก เมื่อดาวใกล้หมดอายุจะออกจากลำดับหลักไปเป็นดาวยักษ์แดง และมีวิวัฒนาการที่ต่างกันขึ้นอยู่กับมวลตั้งต้นที่กำเนิดเป็นดาว ดังนี้

•ดาวฤกษ์ที่มีมวล <2 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวแคระห์ขาว (คาร์บอน)
•ดาวฤกษ์ที่มีมวล <8 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวแคระห์ขาว (ออกซิเจน)
•ดาวฤกษ์ที่มีมวล >8 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวนิวตรอน และพัลซาร์
•ดาวฤกษ์ที่มีมวล >18 เท่าของดวงอาทิตย์ จบชีวิตเป็นหลุมดำ

เนบิวลา

เนบิวลากุหลาบ


     ดาวเกิดจากการรวมตัวของแก๊สและฝุ่นในอวกาศ (Interstellar medium) เมื่อมีมวล มวลมีแรงดึงดูดซึ่งกันและกันตามกฎความโน้มถ่วงแห่งเอกภพ (The Law of Universal) ของนิวตันที่มีสูตรว่า F = G (m1m2/r2) แรงดึงดูดแปรผันตามมวล มวลยิ่งมากแรงดึงดูดยิ่งมาก เราเรียกกลุ่มแก๊สและฝุ่นซึ่งรวมตัวกันในอวกาศว่า “เนบิวลา” (Nebula) หรือ “หมอกเพลิง” เนบิวลาเป็นกลุ่มแก๊สที่ขนาดใหญ่หลายปีแสง แต่เบาบางมีความหนาแน่นต่ำมาก องค์ประกอบหลักของเนบิวลาคือแก๊สไฮโดรเจน เนื่องจากไฮโดรเจนเป็นธาตุที่มีโครงสร้างพื้นฐาน ซึ่งเป็นธาตุตั้งต้นของทุกสรรพสิ่งในจักรวาล

     เนบิวลามีอุณหภูมิต่ำ เนื่องจากไม่มีแหล่งกำเนิดความร้อน ในบริเวณที่แก๊สมีความหนาแน่นสูง อะตอมจะยึดติดกันเป็นโมเลกุล ทำให้เกิดแรงโน้มถ่วงดึงดูดแก๊สจากบริเวณโดยรอบมารวมกันอีก ทำให้มีความหนาแน่นและมวลเพิ่มขึ้นอีกจนกระทั่งอุณหภูมิภายในสูงประมาณ 10 เคลวิน มวลที่เพิ่มขึ้นทำให้พลังงานศักย์โน้มถ่วงของแต่ละโมเลกุลที่ตกเข้ามายังศูนย์กลางของกลุ่มแก๊ส เปลี่ยนรูปเป็นพลังงานความร้อน และแผ่รังสีอินฟราเรดออกมา

ต่อมาเมื่อกลุ่มแก๊สมีความหนาแน่นสูงขึ้นจนความร้อนภายในไม่สามารถแผ่ออกมาได้ อุณหภูมิภายในแกนกลางจึงสูงขึ้นอย่างรวดเร็ว มวลของแก๊สมีแรงโน้มถ่วงสูงจนเอาชนะแรงดันซึ่งเกิดจากการขยายตัวของแก๊สร้อน กลุ่มแก๊สจึงยุบตัวเข้าสู่ศูนย์กลางจนมีอุณหภูมิสูงถึง 10 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชันทำให้อะตอมของไฮโดรเจนหลอมรวมกันเป็นธาตุใหม่คือ ฮีเลียม มวลบางส่วนเปลี่ยนรูปเป็นพลังงาน (นิวเคลียร์ฟิวชัน) ตามสมการ E = mc2 ดาวฤกษ์จึงอุบัติขึ้นมา

ดาวฤกษ์ที่เกิดขึ้นใหม่มีอุณหภูมิสูง ประมาณ 25,000 K เป็นดาวสเปกตรัมประเภท O แผ่รังสีเข้มสุดในช่วงอัลตราไวโอเล็ต เนบิวลาที่ห่อหุ้มดาวดูดกลืนพลังงานจากรังสีอัลตราไวโอเล็ต และแผ่รังสีเข้มสุดในช่วง H-alpha ซึ่งมีความยาวคลื่น 656 nm ออกมาทำให้เรามองเห็นเป็น “เนบิวลาสว่าง” (Diffuse Nebula) สีแดง ได้แก่ เนบิวลาสว่างใหญ่ในกลุ่มดาวนายพราน (M 42 Great Orion Nebula) ในภาพที่ 1 ซึ่งเห็นได้ว่า ใจกลางของเนบิวลาสว่างมีดาวฤกษ์เกิดใหม่อยู่ภายใน

เนื่องจากเนบิวลามีแก๊สและฝุ่นอยู่หนาแน่น บางครั้งอนุภาคขนาดใหญ่เป็นอุปสรรคขวางกั้นการแผ่รังสี จึงเกิดการกระเจิงของแสง (Scattering) ทำให้มองเห็นเป็นเนบิวลาสีฟ้า เช่นเดียวกับที่การกระเจิงของแสงอาทิตย์ในบรรยากาศโลกที่ทำให้ท้องฟ้าเป็นสีฟ้า เราเรียกเนบิวลาประเภทนี้ว่า “เนบิวลาสะท้อนแสง” (Reflection Nebula) ตัวอย่างเช่น เนบิวลาในกระจุกดาวลูกไก่ (M45 Pleiades)

อย่างไรก็ตามบางส่วนของเนบิวลาเป็นกลุ่มแก๊สที่มีอุณหภูมิต่ำอยู่อย่างหนาแน่น กลุ่มแก๊สเหล่านี้เหล่านี้บดบังแสงสว่างจากดาวฤกษ์เกิดใหม่หรือเนบิวลาสว่างซึ่งอยู่ด้านหลัง เราจึงมองเห็นเป็น “เนบิวลามืด” (Dark Nebula) เช่น เนบิวลารูปหัวม้าในกลุ่มดาวนายพราน (Horsehead Nebula)

          
        แม้ว่าในตำราเรียนจะแบ่งเนบิวลาออกเป็น 3 ประเภทคือ เนบิวลาสว่าง เนบิวลาสะท้อนแสง และเนบิวลามืด ในความจริงแล้วเนบิวลาทั้งสามชนิดเป็นเพียงปรากฎการณ์ซึ่งปรากฏให้เห็นเฉพาะในมุมมองจากโลก หากดูในภาพที่ 4 จะเห็นว่า เนบิวลาไทรฟิด (M20 Trifid Nebula) เป็นกลุ่มแก๊สซึ่งมีทั้งเนบิวลาสว่าง เนบิวลาสะท้อนแสง และเนบิวลามืด อยู่ในตัวเดียวกัน ดาวเกิดใหม่ท่ีอยู่ภายในแผ่รังสีออกมากระตุ้นให้กลุ่มแก๊สท่ีอยู่บริเวณรอบๆ แผ่รังสีปรากฏเป็นเนบิวลาสว่างสีแดง แต่มีกลุ่มแก๊สหนาทึบบางส่วนมาบังแสงสว่างทำให้มองเห็นเป็นเนบิวลามืด และเกิดการกระเจิงของแสงที่กลุ่มแก๊สที่อยู่ด้านหลัง ทำให้มองเห็นเป็นเนบิวลาสะท้อนแสงสีน้ำเงิน


เนบิวลาทริฟิดในกลุ่มดาวคนยิงธนู

โปรโตสตาร์
     

โปรโตสตาร์


        เนบิวลาเป็นกลุ่มแก๊สที่มีความหนาแน่นและอุณหภูมิต่างๆ กัน ภาพที่ 1 แสดงส่วนขยายของเนบิวลานกอินทรี (M 16 Eagle Nebula) จากภาพซ้ายมือด้านบนเรียงลำดับจากซ้ายไปขวา และจากบนลงล่าง จนถึงภาพขวามือด้านล่าง บริเวณที่ปรากฏให้เห็นเป็นจะงอยสีดำ คือ กลุ่มแก๊สความหนาแน่นสูงที่กำลังจะยุบตัวกำเนิดเป็นดาวฤกษ์

เมื่อกลุ่มแก๊สในเนบิวลาสะสมตัวกันมากขึ้น จนกระทั่งแรงโน้มถ่วงสามารถเอาชนะแรงดันซึ่งเกิดจากการขยายตัวของแก๊ส กลุ่มแก๊สจะยุบตัวลงอย่างต่อเนื่องและหมุนรอบตัวตามกฎอนุรักษ์โมเมนตัมเชิงมุม (Angular Momentum) เป็นจานรวมมวล แกนกลางของกลุ่มแก๊สเรียกว่า “โปรโตสตาร์”(Protostar) เมื่อโปรโตสตาร์มีอุณหภูมิสูงถึงระดับล้านเคลวิน จะปล่อยอนุภาคพลังงานสูงที่มีลักษณะคล้ายลมสุริยะเรียกว่า “Protostellar Wind” ออกมา เมื่อโปรโตสตาร์ยุบตัวต่อไป กระแสอนุภาคพลังงานสูงจะมีความรุนแรงมาก จนปรากฏเป็นลำพุ่งขึ้นจากขั้วของดาวตามแกนหมุนรอบตัวเองของโปรโตสตาร์




กระจุกดาวเปิด
       เนบิวลาเปรียบเสมือนรังไข่ของดาว เนบิวลาเป็นกลุ่มแก๊สซึ่งประกอบด้วยอะตอมของไฮโดรเจนซึ่งเป็นวัตถุต้นกำเนิดของดาว เนบิวลาแต่ละกลุ่มมีขนาดหลายปีแสง สามารถก่อกำเนิดดาวฤกษ์จำนวนหลายร้อยดวงในระยะเวลาไล่เลี่ยกัน ภาพที่ 1 แสดงการเปรียบเทียบภาพถ่ายในช่วงแสงที่ตามองเห็นกับภาพอินฟราเรดของเนบิวลาสว่างใหญ่ในกลุ่มดาวนายพราน (M 42 Great Orion Nebula) ภาพถ่ายแสงที่ตามองเห็นด้านซ้ายมือแสดงให้เห็นว่าใจกลางของเนบิวลาเต็มไปด้วยกลุ่มแก๊สหนาทึบ มีดาวฤกษ์ซึ่งเป็นต้นกำเนิดของแสงซึ่งเรียกว่า "เทรปีเซียม" (Trapezium) อยู่ภายในเพียงไม่กี่ดวง แต่ภาพถ่ายอินฟราเรดทางด้านขวามือแสดงให้เห็นว่า ภายในใจกลางของเนบิวลามีดาวอยู่เป็นจำนวนมาก ทั้งนี้เนื่องจากรังสีอินฟราเรดมีความยาวคลื่นมาก จึงส่องผ่านทะลุกลุ่มแก๊สออกมาได้


เปรียบเทียบภาพแสงที่ตาเห็น (ซ้ายมือ) กับภาพอินฟราเรด (ขวามือ) ของเนบิวลานายพราน


    หลังจากที่โปรโตสตาร์จุดปฏิกิริยานิวเคลียร์ฟิวชันกลายเป็นดาวฤกษ์ที่มีอุณหภูมิสูงมาจนแผ่รังสีอัลตราไวโอเล็ตและลมดาราวาต (Stellar Winds) ซึ่งเป็นกระแสอนุภาคพลังงานสูงที่มีลักษณะเช่นเดียวลมสุริยะของดวงอาทิตย์ พัดกวาดแก๊สในเนบิวลาให้สลายตัวไป เผยให้เห็นดาวฤกษ์เกิดใหม่นับร้อยดวงซึ่งซ่อนตัวภายในเรียกว่า “กระจุกดาวเปิด” (Open Cluster) ภาพท่ี 2 เป็นภาพของกระจุกดาวลูกไก่ซึ่งมีแก๊สห่อหุ้มอยู่เบาบาง เนื่องจากดาวฤกษ์ที่เกิดใหม่ส่วนใหญ่มีอุณหภูมิสูงกว่า 10,000 K แผ่รังสีเข้มสุดในช่วงรังสีอัลตราไวโอเล็ต ซึ่งมีพลังงานสูง ทำลายอะตอมของไฮโดรเจนที่เคยเป็นแก๊สในเนบิวลา และในที่สุดก็จะเหลือให้เห็นเป็นเพียงกระจุกดาวเปิดเท่านั้น

ดาวฤกษ์ในกระจุกดาวลูกไก่  

       อุปมาได้ว่าชีวิตของดาวเฉกเช่นชีวิตของคน แม้ว่าจะเกิดเป็นพี่น้องคลานตามกันมา แต่ละคนย่อมมีวิถีชีวิตเป็นของตัวเอง ดวงอาทิตย์ของเราถือกำเนิดพร้อมๆ กับดาวฤกษ์จำนวนมากซึ่งเป็นสมาชิกของกระจุกดาวเปิดภายในโซลาร์เนบิวลา (Solar nebula) แต่เมื่อกาลเวลาผ่านไป 4,600 ล้านปี ดาวฤกษ์ที่มีมวลมากเผาผลาญเชื้อเพลิงอย่างรวดเร็วและแตกดับสูญไปแล้ว ดาวฤกษ์มวลน้อยยังคงอยู่ ดาวแต่ละดวงแยกย้ายกันโคจรไปตามแขนของกาแล็กซีทางช้างเผือกในทิศทางที่แตกต่างกัน จึงไม่คงเหลือสภาพกระจุกดาวเปิดให้เห็น ดวงอาทิตย์ของเราโคจรรอบทางช้างเผือกมาแล้วมากกว่า 15 รอบ


ดาวลำดับหลัก
      ขนาดของดาวฤกษ์ขึ้นอยู่กับแรงดันแก๊สร้อนซึ่งดันออกจากแก่นกลางสู่พื้นผิว และมวลของดาวซึ่งทำให้เกิดแรงโน้มถ่วง หากอัตราการเกิดฟิวชันสูงเกินไป แก๊สที่แก่นกลางจะดันดาวให้ขยายตัวออก เมื่อแก๊สขยายตัวอุณหภูมิจะลดต่ำลง (ตามกฎของแก๊ส) ทำให้อัตราการเกิดฟิวชันลดลงด้วย ในทางกลับกันหากอัตราการเกิดฟิวชันต่ำเกินไป แก๊สที่แก่นกลางจะเย็นตัวลง แรงดันแก๊สลดลง เนื้อสารของดาวยุบตัวลงมา ทำให้เกิดความดันและอุณหภูมิสูงขึ้น เพิ่มอัตราการเกิดฟิวชันให้สูงขึ้น ระบบกลไกนี้ช่วยรักษาสมดุลของดาวฤกษ์ ให้มีอัตราการเกิดปฏิกิริยาฟิวชันคงที่สม่ำเสมอเกือบตลอดทั้งชีวิตของดาว อายุขัยของดาวในช่วงเวลานี้เราเรียกว่า “ดาวลำดับหลัก”(Main sequence stars)


แผนภาพ H-R แสดงคุณสมบัติของดาวที่รู้จักกันดี


        เมื่อพิจารณาในแผนภาพ H-R จะเห็นว่า ดาวส่วนใหญ่จะอยู่ในลำดับหลัก ทั้งนี้เนื่องจากดาวใช้เวลา 80% ของอายุขัยอยู่ในลำดับหลัก ดาวลำดับหลักสีน้ำเงินมีอุณหภูมิสูงและมีกำลังส่องสว่างมากกว่าดาวลำดับหลักสีแดง เพราะว่า ดาวลำดับหลักสีน้ำเงินมีมวลตั้งต้นสูงมาก จึงมีขนาดใหญ่ แก๊สมวลมากกดทับกัน ทำให้ดาวมีอุณหภูมิสูงจนแผ่รังสีที่มีความยาวคลื่นเข้มสุดในช่วงรังสีอัลตราไวโอเล็ต ส่วนดาวสีแดงมีมวลตั้งต้นน้อย มีขนาดเล็ก แก๊สจำนวนน้อยกดทับกัน ทำให้ดาวมีอุณหภูมิต่ำ แผ่รังสีที่มีความยาวคลื่นเข้มสุดในช่วงรังสีอินฟราเรด

สเปกตรัมของดาวประเภทต่างๆ


เมื่อพิจารณาเปรียบเทียบสเปกตรัมของดาวแต่ละประเภทจะพบองค์ประกอบดังนี้


•ดาวสเปกตรัม O
อุณหภูมิมากกว่า 25,000​ K มีเส้นดูดกลืนของไฮโดรเจนอยู่อย่างเบาบาง เนื่องจากดาวมีอุณหภูมิสูงมากกว่าสามหมื่นเคลวิน ประจุไม่สามารถเกาะตัวเป็นอะตอม จึงอยู่ในสถานะไอโอไนเซชัน(Ionization)



•ดาวสเปกตรัม B มีอุณหภูมิพื้นผิว 25,000 - 10,000​ K มีเส้นดูดกลืนของไฮโดรเจนและฮีเลียม เนื่องจากดาวมีอุณหภูมิต่ำลงพอที่ประจุจะจับตัวกันเป็นอะตอมได้แล้ว


•ดาวสเปกตรัม A มีอุณหภูมิพื้นผิว 10,000 - 8,000​ K อุณหภูมิประมาณ​10,000 - 25,000​ K มีเส้นดูดกลืนของไฮโดรเจนชัดเจนยิ่งขึ้น เนื่องจากดาวมีอุณหภูมิต่ำกว่าสเปกตรัม B


•ดาวสเปกตรัม F มีอุณหภูมิพื้นผิว 8,000 - 6,000​ K ยังคงมีเส้นดูดกลืนของไฮโดรเจน และเริ่มมีเส้นดูดกลืนอะตอมของธาตุหนักหลายชนิด เช่น แคลเซียม


•ดาวสเปกตรัม G มีอุณหภูมิพื้นผิว 6,000 - 5,000​ K เช่น ดวงอาทิตย์ มีเส้นดูดกลืนของทั้งธาตุหนักและธาตุเบาหลายชนิด เช่น ไฮโดรเจน แคลเซียม และเหล็ก เป็นต้น


•ดาวสเปกตรัม K มีอุณหภูมิพื้นผิว 5,000 - 4,000​ K มีเส้นดูดกลืนของทั้งธาตุหนักและธาตุเบาหลายชนิด เช่น ไฮโดรเจน แคลเซียม และเหล็ก เป็นต้น


•ดาวสเปกตรัม M มีอุณหภูมิพื้นผิว 4,000 - 3,000​ K มีเส้นดูดกลืนของโมเลกุล เช่น ไททาเนียมออกไซด์(TiO) และไฮโดรคาร์บอน (CH) เนื่องจากที่อุณหภูมิประมาณ 3,000 เคลวิน อะตอมสามารถเกาะตัวกันเป็นโมเลกุล

สีของดาวฤกษ์จะมีความสัมพันธ์กับอุณภูมิที่ผิว และอายุของดาว
นักดาราศาสตร์จำแนกดาวฤกษ์ออกเป็นกลุ่มตามสี หรืออุณภูมิพื้นผิวให้จำง่ายๆ ว่า Oh Be A Fine Girl Kiss Me
  • ดาวฤกษ์ที่มี สีน้ำเงิน จะมีอุณหภูมิผิวสูง " อายุน้อย "
  • ดาวฤกษ์ที่มี สีส้มแดง จะมีอุณหภูมิผิวต่ำ "อายุมาก "

จุดจบของดาวฤกษ์
   
        

           
      เมื่อไฮโดรเจนที่แก่นของดาวหลอมรวมเป็นฮีเลียมหมด ปฏิกิริยาฟิวชันที่แก่นดาวจะหยุด และเปลือกไฮโดรเจนที่ห่อหุ้มแก่นฮีเลียมจะจุดฟิวชันแทน ดาวจะขยายตัวออก ณ จุดนี้ดาวจะพ้นจากลำดับหลักกลายเป็นดาวยักษ์แดง เปลือกไฮโดรเจนที่หลอมรวมเป็นฮีเลียมจมลงสะสมตัว ทำให้เกิดแรงกดดันให้แก่นฮีเลียมร้อนขึ้นจนกระทั่งอุณหภูมิสูงถึง 100 ล้านเคลวิน ฮีเลียมก็จะจุดฟิวชันหลอมรวมเป็นธาตุหนักอื่นๆ ต่อไป ได้แก่ คาร์บอน และออกซิเจน

แก่นของดาวยักษ์แดง

เมื่อแก่นฮีเลียมฟิวชัน ดาวที่มีมวลน้อยกว่า 2 – 3 เท่าของดวงอาทิตย์ จะเกิดการระเบิดอย่างฉับพลัน เรียกว่า “ฮีเลียมแฟลช” (Helium Flash) ส่วนดาวที่มีมวลมากกว่า 2 – 3 เท่าของดวงอาทิตย์ จะเกิดการหลอมรวมอย่างค่อยเป็นค่อยไป อุณหภูมิผิวดาวจะสูงขึ้นอีกครั้งหนึ่ง หากพิจารณาแผนภาพ H-R ในภาพที่ 2 จะเห็นว่า เมื่อเกิดการฟิวชันไฮโดรเจน ดาวจะอยู่ในลำดับหลัก หลังจากนั้นก๊าซร้อนบนผิวดาวจะขยายตัวและมีอุณหภูมิต่ำลง พื้นที่ผิวซึ่งมากขึ้นทำให้ดาวมีความสว่างมากขึ้น ดาวจะเคลื่อนตัวเหนือแถบลำดับหลักเล็กน้อย เมื่อดาวเผาผลาญไฮโดรเจนที่แกนหมด ดาวจะก้าวพ้นลำดับหลัก เมื่อเกิดการเผาผลาญเปลือกไฮโดรเจน ดาวจะขยายตัวอย่างรวดเร็วและอุณหภูมิลดต่ำลงกลายเป็นดาวยักษ์แดง กระทั่งดาวยุบตัวลงและเกิดการฟิวชันที่แก่นฮีเลียม ดาวก็จะมีอุณหภูมิสูงขึ้นอีกครั้ง ดาวที่มีมวลมากกว่าดวงอาทิตย์ 9 เท่า จะเปลี่ยนสภาพเป็นดาวยักษ์น้ำเงิน

การพ้นจากดาวลำดับหลักไปสู่ดาวยักษ์แดง (* แสดงตำแหน่งของฮีเลียมแฟลช)

      
      การจบสิ้นชีวิตของดาวขึ้นอยู่กับมวลเริ่มต้นที่ก่อกำเนิดดาวขึ้นมา ดาวที่มีมวลมากมีช่วงชีวิตสั้นกว่าดาวที่มวลน้อย เนื่องจากปฏิกิริยาฟิวชันที่รุนแรงเผาไหม้เชื้อเพลิงภายในดาวอย่างรวดเร็ว นักดาราศาสตร์จำแนกประเภทจุดจบของดาวฤกษ์


•ดาวที่มีมวลตั้งต้นน้อยกว่า 2 เท่า ของดวงอาทิตย์ พ้นลำดับหลักกลายเป็นดาวยักษ์แดง แล้วจบชีวิตเป็นเนบิวลาดาวเคราะห์และดาวแคระขาวคาร์บอน


•ดาวที่มีมวลตั้งต้น 2 - 8 เท่า ของดวงอาทิตย์ พ้นลำดับหลักกลายเป็นดาวยักษ์แดง แล้วจบชีวิตเป็นเนบิวลาดาวเคราะห์และดาวแคระขาวออกซิเจน


•ดาวที่มีมวลตั้งต้นมากกว่า 8 เท่า แต่น้อยกว่า 18 เท่าของดวงอาทิตย์ พ้นลำดับหลักกลายเป็นดาวยักษ์ใหญ่สีแดง แล้วจบชีวิตเป็นซูเปอร์โนวา และดาวนิวตรอน


•ดาวที่มีมวลตั้งต้นมากกว่า 18 เท่า ของดวงอาทิตย์ พ้นลำดับหลักกลายเป็นดาวยักษ์ใหญ่สีแดง แล้วจบชีวิตเป็นซูเปอร์โนวา และหลุมดำ


การสิ้นอายุขัยของดาวฤกษ์

หลุมดำ




ปี ค.ศ.1905 อัลเบิร์ต ไอน์สไตน์ (Albert Einstein) นักดาราศาสตร์ชาวยิว ประกาศทฤษฎีสัมพัทธภาพพิเศษ(Special Relativity) ว่า แสงเดินทางในอวกาศด้วยความเร็วคงที่ด้วยความเร็ว 3 x 108 เมตร/วินาที และไม่ขึ้นอยู่กับทิศทางการเคลื่อนที่ของผู้สังเกตการณ์ ขณะที่สังคมในยุคนั้นถือว่า ความเร็ว = ระยะทาง/เวลา ไอสไตน์กล่าวว่า ความเร็วแสงคงที่ แต่เวลาและระยะทางยืดหดได้ ทั้งนี้ขึ้นอยู่กับความเร็วของผู้สังเกตการณ์ ถ้าผู้สังเกตการณ์เดินทางเข้าใกล้ความเร็วแสง ระยะทางจะหดสั้น กาลเวลาจะช้าลง ดังที่แสดงในกราฟในภาพที่ 1

ภาพที่ เมื่อผู้สังเกตการณ์เคลื่อนที่ใกล้ความเร็วแสง เวลาจะช้าลง



แม้ว่าทฤษฎีสัมพัทธภาพพิเศษของไอน์สไตน์ ฟังดูไม่น่าเชื่อ แต่ทฤษฎีนี้ก็ถูกพิสูจน์แล้วว่า เวลาในยานอวกาศเดินช้ากว่าเวลาบนโลก อนุภาคในอวกาศมีอายุขัยยาวนานกว่าอนุภาคบนโลก ปี ค.ศ.1917​ ไอน์สไตน์ นำเสนอทฤษฎีสัมพัทธภาพทั่วไป (General Relativity) ว่า อวกาศประกอบด้วย 4 มิติ คือ อวกาศและกาลเวลา(Space-time) มวลทำให้อวกาศโค้ง ดาวที่มีมวลมากจะฉุดรั้งให้อวกาศโค้งและกาลเวลายืดออกไป ในลักษณะคล้ายภาพที่ 2


ภาพที่ อวกาศโค้ง



ไม่มีความคิดเห็น:

แสดงความคิดเห็น